Mechanical stability of cubic crystals under hydrostatic and uniaxial loading
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F14%3APU112630" target="_blank" >RIV/00216305:26210/14:PU112630 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mechanical stability of cubic crystals under hydrostatic and uniaxial loading
Original language description
Theoretical strength corresponds to a stress associated with failure of a crystal lattice, i.e., with the first occurrence of mechanical instability. Its value sets an upper limit of attainable stresses in a solid crystal without defects and imperfections. The goal of this study is to advance our fundamental understanding of microscopic mechanisms that limit region of mechanical stability of fcc Ni and fcc Ir under hydrostatic (isotropic) and uniaxial [001] loading. The stability is assessed by analysing phonon spectra that are calculated for different values of strain from first principles. Two methods (linear response method and supercell method) are employed for computation of phonon dispersion curves and their results are compared. A relevant analysis of elastic stability conditions is also performed. Although most of the previous studies of isotropic loading predicted that first instabilities in crystals correspond to macroscopic (elastic) instabilities we found soft phonons of fi
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BM - Solid-state physics and magnetism
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: Central european institute of technology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů