All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Methodology of Evaluation of Heat Transfer Experiment on Aluminum sample

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU114263" target="_blank" >RIV/00216305:26210/15:PU114263 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Methodology of Evaluation of Heat Transfer Experiment on Aluminum sample

  • Original language description

    Cooling is one of the critical points during aluminum casting. Improper cooling leads to a structure which isn't homogenous, full of internal and surface defects. It is necessary to know the boundary conditions (heat transfer coefficient or heat flux) for cooling optimization. The boundary conditions for different types of cooling are obtained from experiments. This article is focused on the cooling of vertical surfaces of aluminum by flat water jets. The sample initial temperature was close to the liquid state. The sample was cooled while in a vertical position by a flat water jet which hit the upper part of the cooling surface, and then the water flow down along the surface. The temperatures were recorded during the experiment by a set of thermocouples which were installed inside the sample. Thermocouples were placed closed to the cooled surface at different heights. The moving horizontal Leidenfrost front between nucleate and film boiling could be observed during the experiment. This front moved downward along the sample surface. The aim of this work is to evaluate the boundary conditions for described measurements. The evaluation held due to the solution of the 2D inverse task, similar to Beck’s sequential methods. The computation procedure was modified to be able to deal with the moving Leidenfrost front between low and height cooling intensities. Results are presented in a form of heat transfer coefficients as a function of position and temperature.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JG - Metallurgy, metal materials

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2015 Full Texts of Papers

  • ISBN

    978-80-87294-58-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    TANGER

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Jun 3, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000374706100194