THE HEAT TRANSFER COEFFICIENT AT DISCONTINUED WATER SPRAY COOLING
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU114301" target="_blank" >RIV/00216305:26210/15:PU114301 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
THE HEAT TRANSFER COEFFICIENT AT DISCONTINUED WATER SPRAY COOLING
Original language description
Cooling by water sprays is widely used in heat treatment and other metallurgical processes to control the process temperature. Water spray cooling is used statically (without movement of the spray nozzles relative to the cooled object) or dynamically (with the movement). The static regime is typical for quenching systems intended for heat treatment of fixed steel plates. The dynamic regime is used in steel treatment processes such as rolling and finishing in mills. The movement of the steel plate relative to the fixed cooling section causes non-homogeneous distribution of water on the surface of the steel plate. The variability of the cooling section length, position of water nozzles and non-homogeneity of water distribution lead to non-uniform and distorted cooling conditions. Thus it is an important issue to define the impact of these parameters on cooling intensity and the heat transfer coefficient during the cooling process of steel plates. Heat treatment of hightemperature steel is held without protective atmosphere and is accompanied by growth of different oxides on the steel plate surface as well. The layer of oxides significantly affects the cooling regime and intensity. The influence of the oxide scales on the cooling intensity was studied experimentally and by numerical modeling for different cooling regimes. Experiments were conducted for static and dynamic regimes on surfaces with different rate of oxides layer. Prepared numerical analysis simulates the process with different conditions of the cooling section and samples with different oxide scale layers. Results obtained by numerical simulation approved the impact of the oxide layer on the cooling intensity and shown different character in the static and the dynamic regime.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20303 - Thermodynamics
Result continuities
Project
<a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2015, 24rd International Conference on Metallurgy and Materials, Conference Proceedings
ISBN
978-80-87294-58-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
TANGER
Place of publication
Ostrava
Event location
Brno
Event date
Jun 3, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000374706100013