All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical Modeling of Oxygen Enhanced Combustion and Transient Heating Characteristics in a Reheating Furnace

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU116710" target="_blank" >RIV/00216305:26210/15:PU116710 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical Modeling of Oxygen Enhanced Combustion and Transient Heating Characteristics in a Reheating Furnace

  • Original language description

    In this work an experimental and numerical investigation of oxygen enhanced combustion (OEC) was done for different oxygen concentrations on a 750 kW lab-scale furnace. Temperatures in the furnace and heat fluxes to the walls were measured and used to validate the CFD model especially the chemical reaction mechanism for applicability in OEC. Flame temperature and shape were in good agreement as well as the heat fluxes to the walls for all combustion cases. An increase of the furnace efficiency was determined from 61% for combustion with air and 73.4% for OEC with an O2 concentration of 30.8vol% in the oxidizer. The same trend was predicted by the numerical simulations. Additionally an industrial walking hearth furnace to reheat steel billets was simulated by the CFD model for air-fuel and OEC with an enrichment level of 25vol% O2. Furnace operation revealed a fuel saving of 8% compared to the air case. The transient simulation of the billets showed that the similar billet surface temperature was achie

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JE - Non-nuclear power engineering, energy consumption and utilization

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TE02000236" target="_blank" >TE02000236: Waste-to-Energy (WtE) Competence Centre</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Australian Combustion Symposium

  • ISBN

  • ISSN

    1839-8162

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1-4

  • Publisher name

    Neuveden

  • Place of publication

    Neuveden

  • Event location

    Melbourne

  • Event date

    Dec 7, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article