All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DESIGN OF COOLING SYSTEMS FOR GROOVED ROLLS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU119263" target="_blank" >RIV/00216305:26210/16:PU119263 - isvavai.cz</a>

  • Result on the web

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=1FrthULdZ1E22feXqwd&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=1FrthULdZ1E22feXqwd&page=1&doc=1</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    DESIGN OF COOLING SYSTEMS FOR GROOVED ROLLS

  • Original language description

    This article deals with the design of cooling systems for grooved rolls. The purpose is to extend the life of rolls by minimizing negative thermal stress during the rolling process. Specifically, this paper presents a design for a cooling section for a U-caliber roll. This article first describes an experimental stand which was built to obtain the boundary conditions (Heat Transfer Coefficients) on the surface of rolls. The laboratory stand consisted of a rotary cylinder and a cooling section. A set of thermocouples was installed in the cylinder. HTCs are evaluated from the temperature record from the cooling experiments, and used to solve a 2D inverse heat conduction problem. The influence of water pressure and various geometric configurations on cooling intensity were studied. The second part of this article deals with the design of an optimal cooling configuration to reduce thermal stress in critical points of the grooved roll. The temperature-deformation FEM model was used to express the state of stress inside the roll. The HTCs obtained from the first part were used as boundary conditions. The cooling effect of the proposed cooling configuration was verified experimentally. A stainless steel sample with U-shaped groove and instruments was made for this purpose. The size and dimension of the sample was designed on a realistic caliber scale.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2016, 25rd International Conference on Metallurgy and Materials, Conference Proceedings

  • ISBN

    978-80-87294-67-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    255-260

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 25, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000391251200038