All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of the surface roughness on the cooling intensity during spray cooling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU119310" target="_blank" >RIV/00216305:26210/16:PU119310 - isvavai.cz</a>

  • Result on the web

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=1FrthULdZ1E22feXqwd&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=1FrthULdZ1E22feXqwd&page=1&doc=1</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of the surface roughness on the cooling intensity during spray cooling

  • Original language description

    The surface roughness plays an important role during spray cooling of hot surfaces in a presence of the boiling. Bubbles are formed in small cavities on the surface during nucleate pool boiling. Enhanced surface roughness causes that more bubbles are formed and it causes increased cooling intensity. The surface with increased roughness has also bigger surface area, which allows higher heat flow between surface and surrounding water. The influence of the surface roughness during pool boiling was investigated by many authors. The increased surface roughness causes shift of the Leidenfrost temperature to higher temperatures and increases critical heat flux during pool boiling. The influence of the surface roughness during spray cooling of hot surfaces was not still sufficiently investigated and it is not known if the effect of the surface roughness is similar like in a case of the pool boiling. Experiments for describing the effect of the surface roughness on the cooling intensity were conducted with water nozzle with flat jet. Test samples were heated in a protective atmosphere at a temperature 730 ºC and then cooled to the room temperature. Test samples were made of the austenitic stainless steel to minimize the forming of the scales on the surface. Results shoving influence of the surface roughness on the critical heat flux and on the Leidenfrost temperature are presented.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2016, 25rd International Conference on Metallurgy and Materials, Conference Proceedings

  • ISBN

    978-80-87294-67-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    41-46

  • Publisher name

    TANGER Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 25, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000391251200003