Preliminary Design and Analysis of Regenerative Heat Exchanger
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU121390" target="_blank" >RIV/00216305:26210/16:PU121390 - isvavai.cz</a>
Result on the web
<a href="http://www.aidic.it/cet/16/52/082.pdf" target="_blank" >http://www.aidic.it/cet/16/52/082.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET1652110" target="_blank" >10.3303/CET1652110</a>
Alternative languages
Result language
angličtina
Original language name
Preliminary Design and Analysis of Regenerative Heat Exchanger
Original language description
Heat regenerators transfer heat from one gas to another, with by storage in solids. This type of heat exchanger is used primarily when heat has to be transferred between enormous amounts of gases, when the gases are dirty and liable to plug up the recuperative heat exchangers, or when the gas is too hot or reactive. Regenerative heat exchanger can provide at the same volume much higher heat transfer area and lower friction factor than recuperative heat exchanger. Furthermore, regenerative heat exchanger has in most cases better efficiency and its construction is much simpler. The calculation of this type heat exchanger is relatively complicated. Moreover, a suitable and adequately accurate calculation method is not freely available. Those are the main reasons why the companies are not interested in this type of heat exchanger. On the grounds of requirements from companies we started to deal with design of regenerative heat exchangers and creation of suitable calculation model that would cover all their requirements. The various possibilities of regenerative heat exchanger applications will be described in the paper. For various types of geometries of heat transfer surface their advantages and disadvantages will be described. On the basis of measurements of several types of heat transfer surfaces geometries their possibilities of heat absorption and amount of pressure drop will be compared. The mathematical models for calculation of these heat exchangers will be the main issue of the paper. The possibilities of improvement and extension of the simple calculation model will be also described/introduced. This model can be used for preliminary calculation of regenerator for given purpose. Simultaneous using of regenerator as heat exchanger and a reactor in which, for example, can take place cleaning of waste gas will be discussed. The possibility of simultaneous use of regenerative heat exchanger as the reactor, where cleaning of waste could take place, will be consider
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20401 - Chemical engineering (plants, products)
Result continuities
Project
<a href="/en/project/TE02000236" target="_blank" >TE02000236: Waste-to-Energy (WtE) Competence Centre</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Chemical Engineering Transactions
ISBN
978-88-95608-42-6
ISSN
2283-9216
e-ISSN
—
Number of pages
6
Pages from-to
655-660
Publisher name
Aidic Servizi, S.r.l.
Place of publication
Milano, Italy
Event location
Praha
Event date
Aug 27, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000392209500110