All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Use of schlieren methods to study gas flow in laser technology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU144075" target="_blank" >RIV/00216305:26210/16:PU144075 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.researchgate.net/publication/309961266_Use_of_schlieren_methods_to_study_gas_flow_in_laser_technology" target="_blank" >https://www.researchgate.net/publication/309961266_Use_of_schlieren_methods_to_study_gas_flow_in_laser_technology</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Use of schlieren methods to study gas flow in laser technology

  • Original language description

    Laser technologies such as welding and cutting rely on process gases. We suggest to use schlieren imaging to visualize the gas flow during these processes. During the process of laser welding, the shielding gas flows to the welded area to prevent oxidation of the weld pool by surrounding air. The gas also interacts with hot plasma spurting from the key hole induced by the laser beam incident on the molten material. This interaction is quite complicated because hot plasma mixes with the cold shielding gas while the system is moving along the weld. Three shielding gases were used in the presented experiment: Ar, He and N-2. Differences in dynamics of the flow are clearly visible on schlieren images. Moreover, high speed recording reveals a structure consisting of hot gas bubbles. We were also able to determine the velocity of the bubbles from the recording. During laser cutting, the process gas flows coaxially with the laser beam from the nozzle to remove the molten material out of the kerf. The gas flo

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/TA04020456" target="_blank" >TA04020456: The development of new types of solar absorbers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů