Application of Heterogeneous Blading Systems Is the Way for Improving Efficiency of Centrifugal Energy Pumps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU124819" target="_blank" >RIV/00216305:26210/17:PU124819 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1134/S0040601517110088" target="_blank" >http://dx.doi.org/10.1134/S0040601517110088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0040601517110088" target="_blank" >10.1134/S0040601517110088</a>
Alternative languages
Result language
angličtina
Original language name
Application of Heterogeneous Blading Systems Is the Way for Improving Efficiency of Centrifugal Energy Pumps
Original language description
The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient ns < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of ns are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1–4% (in the experiments for the pumps with ns = 33 and 55) and to extend its efficient working zone approximately by 15–20% (in the experiment for the pumps with ns = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Thermal Engineering (English translation of Teploenergetika)
ISSN
0040-6015
e-ISSN
—
Volume of the periodical
64
Issue of the periodical within the volume
11
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
7
Pages from-to
794-801
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85031758057