All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A New Numerical Approach for Exergy Targets and Losses Determination in Sub-Ambient Processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU127169" target="_blank" >RIV/00216305:26210/17:PU127169 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3303/CET1761202" target="_blank" >http://dx.doi.org/10.3303/CET1761202</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1761202" target="_blank" >10.3303/CET1761202</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A New Numerical Approach for Exergy Targets and Losses Determination in Sub-Ambient Processes

  • Original language description

    Sub-ambient processes such as a refrigeration system are a highly energy intensive area in chemical industries. Refrigeration systems require a high level of process cooling using a combination of compression and expansion operations. It is, therefore, crucial to optimise heat transfer between the utility system and the process streams including the placement of compression and expansion operations to minimise the exergy losses and work as much as possible. This paper demonstrates how heat integration tools such as Pinch Analysis and Exergy Analysis can be applied to determine exergy losses and exergy targets for sub-ambient processes. In this study, a numerical approach, the Exergy Problem Table Algorithm (Ex-PTA), is proposed as an improved method compared to the graphical method based on the Extended Pinch Analysis and Design (ExPAnD) methodology. The methodology is applied to a literature case study of a refrigeration system to prove its validity. For the new numerical method, the minimum exergy requirement above the Exergy Pinch is 2.67 kW, while the maximum exergy rejection below the Exergy Pinch is 1.33 kW. The result shows that the total exergy loss for the process is 4.74 kW. In contrast, the maximum exergy rejection and minimum exergy requirement obtained in ExPAnD are 0.46 kW and 5.38 kW while the total exergy loss is 6.72 kW. These new targets assume so-called horizontal heat transfer is allowed between process and utility streams, whereas the ExPAnD method assumes vertical heat transfer between process and utility and, therefore, results in less optimistic targets.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Chemical Engineering Transactions

  • ISBN

    978-88-95608-51-8

  • ISSN

    2283-9216

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1225-1230

  • Publisher name

    Italian Association of Chemical Engineering - AIDIC

  • Place of publication

    Neuveden

  • Event location

    Tianjin

  • Event date

    Aug 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article