All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Total site mass, heat and power integration using process integration and process graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU127215" target="_blank" >RIV/00216305:26210/18:PU127215 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jclepro.2017.08.035" target="_blank" >http://dx.doi.org/10.1016/j.jclepro.2017.08.035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2017.08.035" target="_blank" >10.1016/j.jclepro.2017.08.035</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Total site mass, heat and power integration using process integration and process graph

  • Original language description

    This paper aims to develop a novel method to visualise and solve Total Site Mass, Heat and Power Integration problem using a combination of Process Integration and P-graph techniques. Previous methods dealing with mass, heat and power integration are based on Mathematical Programming, which has the disadvantage of lacking adequate visualisation tools during the construction and optimisation of the problem. It also can face computational issues as problems become increasingly complex. The new method incorporates three important process engineering tools: (1) process modelling of mass and energy balance, (2) Pinch Analysis of individual processes and Total Site Heat Integration of clusters of related processes, and (3) the construction of a Total Site superstructure within the P-graph framework to represent the possible mass, heat, and power interconnections between process and utility systems. To demonstrate the method, a biorefinery case study is investigated. The basis for the biorefinery is a Kraft pulp mill in combination with three potential processes, combined heat and power, and geothermal steam. The three considered new processes are gasification for dimethyl-ether production, simultaneous scarification and co-fermentation of pine for ethanol production, and hydrothermal liquefaction for bio-oil production. Results from the case study show the current optimal solution as a Kraft mill with geothermal heat achieving a profit (revenue less energy and capital costs) of NZD $283 M/y. A near-optimal solution has hydrothermal liquefaction added to the Kraft mill with geothermal heat with a profit of NZD $252 M/y.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    167

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    32-43

  • UT code for WoS article

    000413128100004

  • EID of the result in the Scopus database

    2-s2.0-85029725589