Utilization of Machine Learning in Vibrodiagnostics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU128776" target="_blank" >RIV/00216305:26210/18:PU128776 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-97888-8_24" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-97888-8_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-97888-8_24" target="_blank" >10.1007/978-3-319-97888-8_24</a>
Alternative languages
Result language
angličtina
Original language name
Utilization of Machine Learning in Vibrodiagnostics
Original language description
The article deals with possibilities of use machine learning in vibrodiagnostics to determine a fault type of the rotary machine. Sample data are simulated according to the expected vibration velocity waveform signal at a specific fault. Then the data are pre-processed and reduced for using Matlab Classification Learner which creates a model for identifying faults in the new data samples. The model is finally tested on a new sample data. The article serves to verify the possibility of this method for later use on a real machine. In this phase is tested data preprocessing and a suitable classification method.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Intelligent Systems and Computing
ISSN
2194-5357
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
2017
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
271-278
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85051756704