Optimization of design parameters of fracture resistant piezoelectric vibration energy harvester
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU130135" target="_blank" >RIV/00216305:26210/18:PU130135 - isvavai.cz</a>
Result on the web
<a href="https://www.scientific.net/KEM.774.416" target="_blank" >https://www.scientific.net/KEM.774.416</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/www.scientific.net/KEM.774.416" target="_blank" >10.4028/www.scientific.net/KEM.774.416</a>
Alternative languages
Result language
angličtina
Original language name
Optimization of design parameters of fracture resistant piezoelectric vibration energy harvester
Original language description
This paper is focused on an analysis of a multilayer ceramic-based piezoelectric vibration energy harvester, which could be excited by ambient vibrations or external forces and thus provide a useful source of electricity for modern electronics. The proposed multilayer concept of the energy harvester enables introduction of tensile / compressive residual stresses inside particular layers. These stresses are intended to be used for enhancement of the harvester´s fracture resistance and simultaneously for the improvement of the energy gain upon its operation. A crack arrest, by means of compressive residual stresses (in the outer “non-piezo” layer), will be utilized to this end. Primarily, the extended classical laminate theory (taking into account the piezoelectric characteristics of selected layers) will be used to define various designs of particular layers with various levels of residual stresses inside them. The weight function method is subsequently employed to select a design, which is most resistant to propagation of preexisting cracks. Selected laminate configurations are verified by means of FE simulations. Such analysis is essential for development of new energy harvesting systems formed of new smart materials and structures, which could be integrated in future development processes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
<a href="/en/project/GA17-08153S" target="_blank" >GA17-08153S: Novel material architectures for SMART piezoceramic electromechanical converters</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Key Engineering Materials
ISBN
9783035713503
ISSN
1013-9826
e-ISSN
—
Number of pages
7
Pages from-to
416-422
Publisher name
Trans Tech Publications Ltd
Place of publication
Neuveden
Event location
Sevilla
Event date
Sep 4, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—