On stability and stabilization of some discrete dynamical systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU130673" target="_blank" >RIV/00216305:26210/18:PU130673 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mma.4855" target="_blank" >https://doi.org/10.1002/mma.4855</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.4855" target="_blank" >10.1002/mma.4855</a>
Alternative languages
Result language
angličtina
Original language name
On stability and stabilization of some discrete dynamical systems
Original language description
The paper formulates effective and non-improvable stability conditions for a linear difference system involving two integer delays. The utilized technique combines algorithm of the discrete D-decomposition method with some procedures of the polynomial theory. Contrary to the related existing results, the derived conditions are fully explicit with respect to both delays which enables their simple applicability in various scientific and engineering areas. As an illustration, we show their importance in delayed feedback controls of discrete dynamical systems, with a particular emphasize put on stabilization of unstable steady states of the discrete logistic map.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotic theory of ordinary and fractional differential equations and their numerical discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
41
Issue of the periodical within the volume
10
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
3684-3695
UT code for WoS article
000435801200013
EID of the result in the Scopus database
2-s2.0-85048893672