All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Contribution of an Electro-Vortex Flow to Primary, Secondary, and Tertiary Electric Current Distribution in an Electrolyte

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU136972" target="_blank" >RIV/00216305:26210/18:PU136972 - isvavai.cz</a>

  • Result on the web

    <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=14&SID=D1mYtjVweLYpwOM65oz&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=14&SID=D1mYtjVweLYpwOM65oz&page=1&doc=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1149/2.1201811jes" target="_blank" >10.1149/2.1201811jes</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Contribution of an Electro-Vortex Flow to Primary, Secondary, and Tertiary Electric Current Distribution in an Electrolyte

  • Original language description

    Three different approaches, known as primary, secondary, and tertiary current distributions, are employed to calculate the electric current distribution throughout an electrochemical system. Ohm's law is used for the primary and secondary, whereas Nernst-Planck equations for the tertiary. The electromagnetic field is calculated in the entire system (CaF2-based electrolyte, air, electrode, and graphite crucible), while the electro-vortex flow and concentration fields of ions are solved only in the electrolyte. The model accounts for the faradaic reaction of the formation of Fe2+ at the anode and the discharge of Fe2+ and Ca2+ at the cathodic crucible. The electric double layer (EDL) is modeled considering the generalized Frumkin-Butler-Volmer (gFBV) formula. The dissimilarity in the calculated concentration of Fe2+ between secondary and tertiary current distributions decreases with the increase of the applied voltage. A strong stirring of the electrolyte by (exclusive) Lorentz force cannot guarantee uniform concentration for all ions. As the applied voltage increases the migration may locally surpass the advection flux, leading to accumulation of ions near the anode/cathode. All current distributions (primary, secondary and tertiary) predict equal bulk electrical resistance in the absence of diffusive electric current, equal diffusion coefficients for all ions, despite the non-uniform distribution of electrical conductivity in the tertiary current distribution. The modeling results enabled us to elucidate the origin of an experimentally observed phenomenon, i.e., the formation of a thick layer of FeO under the tip of electrode. (C) 2018 The Electrochemical Society.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF THE ELECTROCHEMICAL SOCIETY

  • ISSN

    0013-4651

  • e-ISSN

    1945-7111

  • Volume of the periodical

    165

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    „E604“-„E615“

  • UT code for WoS article

    000444098600002

  • EID of the result in the Scopus database

    2-s2.0-85059958689