All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semi-empirical computational tool for design of air-cooled condensers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU139750" target="_blank" >RIV/00216305:26210/18:PU139750 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semi-empirical computational tool for design of air-cooled condensers

  • Original language description

    Many economic and environmental restrictions have resulted in the increase of use of dry cooling technology. An effort to minimize the consumption of water is one of main reasons why researchers and engineers are working on technologies for dry cooling which does not use water. Production of electricity in power plants is an important industrial activity where the wet cooling process is commonly utilized by means of cooling towers with a huge consumption of water which is evaporated into the atmosphere. An alternative technology for the withdrawal of the waste heat is the use of air-cooled condensers. Such condensers use the fan-forced air for water steam condensation and waste heat removal to the ambient environment. Apparently, the overall efficiency of the power plant is influenced by the design and performance characteristics of the air-cooled condenser. A proper setup and layout of the air-cooled condenser is therefore an important issue in the design and/or in the retrofits of power plants utilizing dry cooling systems and air-cooled condensers. A CFD analysis is a computational approach that is commonly utilized for the thermal analysis of the air-cooled condensers. However, CFD models and simulations are computationally demanding and often tricky. In the paper, the semi-empirical computational tool applicable for design and thermal investigations of air-cooled condensers is presented. The model is fast enough to complete simulations of operation of air-cooled condensers within dozens of minutes. The tool represents a unique combination of a simple numerical control-volume-based model of the air-cooled condenser which is coupled with empirical relationships gained from the literature. A good agreement between the semi-empirical model, data sheet parameters provided by producers of air-cooled condensers and experimentally gained data was achieved.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Conference Proceeding

  • ISBN

    9781510881198

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    Czech Society of Chemical Engineering

  • Place of publication

    Neuveden

  • Event location

    Prague

  • Event date

    Aug 25, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article