All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A magnetorheological fluid shaft seal with low friction torque

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU131733" target="_blank" >RIV/00216305:26210/19:PU131733 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-665X/ab0834/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-665X/ab0834/meta</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-665X/ab0834" target="_blank" >10.1088/1361-665X/ab0834</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A magnetorheological fluid shaft seal with low friction torque

  • Original language description

    This paper deals with the design and tests of a magnetorheological fluid seal (MRFs) using the innovative concept of the magnetic circuit, which allows the achievement of a promising trade-off between burst pressure and friction of the seal. Low friction torque and low burst pressure are typical for a ferrofluid seal (FFs). Replacement of the ferrofluid by magnetorheological fluid increases the burst pressure of the seal but the friction torque of the seal increases too. The optimum for sealing application is low friction torque and high burst pressure. The presented design is based on the pinch mode of magnetorheological fluid. The geometry of the seal was determined by a magnetostatic model. Subsequently, the chosen concept of the seal was manufactured and tested. Pinch MRFs achieved lower friction torque than common (standard) MRFs and a higher burst pressure than any FFs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Smart Materials and Structures

  • ISSN

    0964-1726

  • e-ISSN

    1361-665X

  • Volume of the periodical

    1

  • Issue of the periodical within the volume

    28

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000461951000001

  • EID of the result in the Scopus database

    2-s2.0-85065673124