All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Air Filtration Using Hollow-Fiber Membranes: A Comparison of Theoretical Models for the Most Penetrating Particle Size and Dimensionless Permeability with Experimental Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU132009" target="_blank" >RIV/00216305:26210/19:PU132009 - isvavai.cz</a>

  • Result on the web

    <a href="https://afsspring.societyconference.com/v2/" target="_blank" >https://afsspring.societyconference.com/v2/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Air Filtration Using Hollow-Fiber Membranes: A Comparison of Theoretical Models for the Most Penetrating Particle Size and Dimensionless Permeability with Experimental Data

  • Original language description

    Hollow-fiber membranes (HFMs) have been widely applied to many liquid treatment applications such as wastewater treatment, membrane distillation and membrane contactor/bioreactor applications. However, they have rarely been used for aerosol filtration thus far. In this work, we compared mathematical models developed for predicting the most penetrating particle size (MPPS) and dimensionless permeability, applying them on the structural parameters of polypropylene HFMs. MPPS were compared with experimentally measured value using a monodisperse (20, 35, 50, 70, 100, 140, 280 and 400 nm) and a polydisperse aerosol (15–594 nm). Dimensionless permeability was predicted using models based solely on solid volume fraction (SVF), assuming isotropic 3D pore structure. The results were then compared with air permeability, which was measured using a Quantachrome 3Gzh capillary flow porometer. In the experiments with the monodisperse aerosol, no penetration was observed regardless of particle size. Therefore, face

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Computer Simulations for Effective Low-Emission Energy Engineering</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů