All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU133008" target="_blank" >RIV/00216305:26210/19:PU133008 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652619326502" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652619326502</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2019.117790" target="_blank" >10.1016/j.jclepro.2019.117790</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments

  • Original language description

    This paper discusses an experimental evaluation of fine particle emissions (16.5–583 nm) released by a three-dimensional printer from various printing materials. Fine particle emissions were identified for a three-dimensional printer that uses fused deposition modelling technology. A method for evaluation of fine particle emissions from printing materials was developed. This method allowed us to test twelve commonly available printing materials. Size distributions of the produced fine particles and their concentrations were observed for each printing material during the printing periods. The count median diameter of emitted particles ranged from 26 to 56 nm. Particle number concentrations in a closed cover of a three-dimensional printer ranged from 103–106 particles/cm3, depending on the particular printing material. Tested printing materials were then subjected to thermogravimetric analysis. This analysis provides detailed information about the emission of fine particles and mass loss of a sample of the material depending on the current temperature of the printing material. The study presents information about differences between particular printing materials in terms of the amount of emitted fine particles as well as the particle size distribution of the amount over time. The study also suggests that thermogravimetric analysis of materials can be used for estimation of particle emission that will occur during the printing process that is based on fused deposition modelling.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    237

  • Issue of the periodical within the volume

    117790

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000483462700082

  • EID of the result in the Scopus database

    2-s2.0-85069902585