All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental Study on Spray Breakup in Turbulent Atomization Using a Spiral Nozzle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134342" target="_blank" >RIV/00216305:26210/19:PU134342 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-9717/7/12/911/htm" target="_blank" >https://www.mdpi.com/2227-9717/7/12/911/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr7120911" target="_blank" >10.3390/pr7120911</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental Study on Spray Breakup in Turbulent Atomization Using a Spiral Nozzle

  • Original language description

    Spiral nozzles are widely used in wet scrubbers to form an appropriate spray pattern to capture the polluting gas/particulate matterwith the highest possible efficiency. Despite this fact, and a fact that it is a nozzle with a very atypical spray pattern (a full cone consisting of three concentric hollow cones), very limited amount of studies have been done so far on characterization of this type of nozzle. This work reports preliminary results on the spray characteristics of a spiral nozzle used for gas absorption processes. First, we experimentally measured the pressure impact footprint of the spray generated. Then effective spray angles were evaluated from the photographs of the spray and using the pressure impact footprint records via Archimedean spiral equation. Using the classical photography, areas of primary and secondary atomization were determined together with the droplet size distribution, which were further approximated using selected distribution functions. Radial and tangential spray velocity of droplets were assessed using the laser Doppler anemometry. The results show atypical behavior compared to different types of nozzles. In the investigated measurement range, the droplet-size distribution showed higher droplet diameters (about 1 mm) compared to, for example, air assisted atomizers. It was similar for the radial velocity, which was conversely lower (max velocity of about 8 m/s) compared to, for example, effervescent atomizers, which can produce droplets with a velocity of tens to hundreds m/s. On the contrary, spray angle ranged from 58 degrees and 111 degrees for the inner small and large cone, respectively, to 152 degrees for the upper cone, and in the measured range was independent of the inlet pressure of liquid at the nozzle orifice.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Computer Simulations for Effective Low-Emission Energy Engineering</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Processes

  • ISSN

    2227-9717

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    25

  • Pages from-to

    1-25

  • UT code for WoS article

    000506635300049

  • EID of the result in the Scopus database

    2-s2.0-85079055137