All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Learning Approach for Industrial Process Improvement

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134371" target="_blank" >RIV/00216305:26210/19:PU134371 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aidic.it/cet/19/76/082.pdf" target="_blank" >https://www.aidic.it/cet/19/76/082.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1976082" target="_blank" >10.3303/CET1976082</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Learning Approach for Industrial Process Improvement

  • Original language description

    The full operation of an industrial processing facility with artificial intelligence has been the holy grail of The full operation of an industrial processing facility with artificial intelligence has been the holy grail of Industry 4.0. One of the inherent difficulties is the enumerate and complex nature of processing information within an industrial plant. Hence, such data should be processed efficiently. This paper demonstrates the effectiveness of a deep auto-encoder neural network for the dimensionality reduction of industrial processing data. The deep auto-encoder neural network functions to intake all possible processing data from the processing system by sending it into an encoder neural network. Subsequently, the encoder condenses the data into highly compressed encoded variables. The network is trained in an unsupervised manner, where a decoder neural network simultaneously attempts to revert the encoded variables to their original form. Such a deep learning approach allows data to be highly compressed into lower dimensions. The coded variables retain critical information of the processing system, allowing reconstruction of the full process data. Auto-encoder neural networks are also able to provide noise removal for encoded data. For application, the encoded variable can be utilized as an effective dimension-reduced variable that can be used for plant-wide optimization. This paper also discusses the further applications of encoded variables for industrial process improvements using the Industrial Internet of Things (IIoT) technologies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategic Partnership for Environmental Technologies and Energy Production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    76

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    487-492

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85076315617