All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Potential of Cross-Sector Energy Integration for Gas Emission Mitigation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134439" target="_blank" >RIV/00216305:26210/19:PU134439 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aidic.it/cet/19/72/020.pdf" target="_blank" >https://www.aidic.it/cet/19/72/020.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1972020" target="_blank" >10.3303/CET1972020</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Potential of Cross-Sector Energy Integration for Gas Emission Mitigation

  • Original language description

    Global energy demands are increasing, and various forecast have indicated a continuing growth trend in the future. The increased demand often leads to a more stringent impact on the environment and, consequently, on humankind. To obtain a more efficient energy supply and utility network, analysis should consider improvement in i) efficiency of utility transport, ii) energy efficiency within various energy sectors (intensification), and iii) integration of different sectors. The potential of this last improvement has been only vaguely analysed, considering the business-as-usual approaches. To reveal the potential in the integration of different energy sectors, it is necessary to define the energy needed rather than considering traditional utility levels. Instead of using the top-down approach of first selecting the type and level of utility and only consequently covering the needs from available utilities, using a bottom-up approach can be beneficial. In the latter, the type and level of energy are derived for energy demands in a certain sector for the most common activities, and based on derived energy type and level requirement, the energy supply and utility network can subsequently be constructed. The aim of this study was to decrease overall primary energy source utilisation, while still covering the increasing energy demands. In this study, the types and levels of energy demands were first derived within each sector for the most common activities. The resulting solution based on cross-sector energy integration indicated heat demand reduction of 43 % and 41 % reduction of EU fossil-based GHG emissions in 2016.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    72

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    115-120

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85061428657