Anaerobic digestion of lignocellulosic waste: Environmental impact and economic assessment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134443" target="_blank" >RIV/00216305:26210/19:PU134443 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0301479718311484" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479718311484</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2018.10.020" target="_blank" >10.1016/j.jenvman.2018.10.020</a>
Alternative languages
Result language
angličtina
Original language name
Anaerobic digestion of lignocellulosic waste: Environmental impact and economic assessment
Original language description
Lignocellulosic waste (LW) is abundant in availability and is one of the suitable substrates for anaerobic digestion (AD). However, it is a complex solid substrate matrix that hinders the hydrolysis stage of anaerobic digestion. This study assessed various pre-treatment and post-treatments of lignocellulosic waste for anaerobic digestion benefiting from advanced P-graph and GaBi software (Thinkstep, Germany) from the perspective of cost and environmental performances (global warming potential, human toxicity, ozone depletion potential, particulate matter, photochemical oxidant creation, acidification and eutrophication potential). CaO pre-treatment (P4), H2S removal with membrane separation post-treatment (HSR MS) and without the composting of digestate is identified as the cost-optimal pathway. The biological (P7- Enzyme, P8- Microbial Consortium) and physical (P1- Grinding, P2- Steam Explosion, P3- Water Vapour) pre-treatments alternatives have lower environmental impacts than chemical pre-treatments (P4- CaO, P5- NaOH, P6- H2SO4) however they are not part of the near cost optimal solutions. For post-treatment, the near cost optimal alternatives are H2S removal with organic physical scrubbing (HSR OPS) and H2S removal with amine scrubbing (HSR AS). HSR AS has a better performance in the overall environmental impacts followed by HSR MS and HSR OPS. In general, the suggested cost-optimal solution is still having relatively lower environmental impacts and feasible for implementation (cost effective). There is very complicated to find a universal AD solution. Different scenarios (the type of substrate, the scale, product demand, policies) have different constraints and consequently solutions. The trade-offs between cost and environment performances should be a future extension of this work.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF ENVIRONMENTAL MANAGEMENT
ISSN
0301-4797
e-ISSN
1095-8630
Volume of the periodical
neuveden
Issue of the periodical within the volume
231
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
352-363
UT code for WoS article
000456641100039
EID of the result in the Scopus database
2-s2.0-85055999644