All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Closure operators associated to ternary relations for structuring the digital plane

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134878" target="_blank" >RIV/00216305:26210/19:PU134878 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&searchWithin=%22First%20Name%22:Josef&searchWithin=%22Last%20Name%22:Slapal" target="_blank" >https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&searchWithin=%22First%20Name%22:Josef&searchWithin=%22Last%20Name%22:Slapal</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICAMCS.NET46018.2018.00029" target="_blank" >10.1109/ICAMCS.NET46018.2018.00029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Closure operators associated to ternary relations for structuring the digital plane

  • Original language description

    We study closure operators associated to ternary relations. We focus on a certain ternary relation on the digital line Z and discuss the closure operator on the digital plane Z^2 associated to a special product of two copies of the relation. This closure operator is shown to allow for an analogue of the Jordan curve theorem, so that it may be used as a background structure on the digital plane for the study of digital images. An advantage of this closure operator over the Khalimsky topology is shown, too.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2018 International Conference on Applied Mathematics & Computational Science, ICAMCS.NET 2018

  • ISBN

    9781538694695

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    125-128

  • Publisher name

    Institute of Electrical and Electronics Engineers ( IEEE )

  • Place of publication

    Los Alamitos, CA, USA

  • Event location

    Budapest

  • Event date

    Oct 6, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000533569600023