All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forecasting Air Pollution by Adaptive Neuro Fuzzy Inference System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135405" target="_blank" >RIV/00216305:26210/19:PU135405 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.23919/SpliTech.2019.8783075" target="_blank" >http://dx.doi.org/10.23919/SpliTech.2019.8783075</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/SpliTech.2019.8783075" target="_blank" >10.23919/SpliTech.2019.8783075</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forecasting Air Pollution by Adaptive Neuro Fuzzy Inference System

  • Original language description

    Air pollution causes a variety of adverse effects on humans such as illness or even death and damages the living organisms and the natural environment. This environmental issue needs to be controlled using various application and technology to estimate the composition of multiple pollutants in the atmosphere for a specified time and location. The present study aims to develop a system for air pollution forecasting using an adaptive neuro-fuzzy inference system. This method is a type of artificial neural network that integrates both neural networks and fuzzy logic principles. The adaptive neuro-fuzzy inference system calculations include four phases including implement fuzzy system, enter parameters, start the learning process, and verify the processed data. As a sample, the concentrations of atmospheric pollutant data recorded by sensors. The adaptive neuro-fuzzy inference system method predicts four air pollution indicator levels, including carbon monoxide, sulfur dioxide, nitrogen oxides, and trioxygen. The analysis results reveal that the mean absolute error of the adaptive neuro-fuzzy inference system method results is less than 15 %.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2019 4TH INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE TECHNOLOGIES (SPLITECH)

  • ISBN

    978-953-290-091-0

  • ISSN

  • e-ISSN

  • Number of pages

    3

  • Pages from-to

    456-458

  • Publisher name

    Institute of Electrical and Electronics Engineers Inc.

  • Place of publication

    Neuveden

  • Event location

    Univ Split, Fac Elect Engn, Mech Engn & Naval Ar

  • Event date

    Jun 18, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000502810800083