All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Optimal Design of Welded Plate Heat Exchanger with Intensified Heat Transfer for Ammonia Synthesis Column

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135828" target="_blank" >RIV/00216305:26210/19:PU135828 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aidic.it/cet/19/76/011.pdf" target="_blank" >https://www.aidic.it/cet/19/76/011.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1976011" target="_blank" >10.3303/CET1976011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Optimal Design of Welded Plate Heat Exchanger with Intensified Heat Transfer for Ammonia Synthesis Column

  • Original language description

    The modification of heat exchanger networks of industrial enterprises targeting energy saving solutions requires proper heat transfer equipment. The estimation of the optimal design parameters for heat exchangers requires reliable mathematical models for the description of the thermo-hydraulic processes inside the channels, and adequate optimisation methods. This work proposes the novel mathematical model and optimisation algorithm for the selection of welded plate heat exchanger (WPHE) operating in ammonia synthesis column. It enables finding the optimal design with the specified shape of the corrugated plates, distribution of flows and number of plates and passes. The developed algorithm is implemented in Mathcad software. The application of the proposed approach is illustrated by example in which the resulted WPHE with the cross flow in one pass and overall symmetric counterflow of streams has shown a reduction of heat transfer area 25 % compared to previously tested in industry WPHE with unsymmetric passes arrangement.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    76

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    61-66

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85076323563