All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cost Optimisation of a Flexible Heat Exchanger Network with Fluctuation Probability using Break-Even Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135965" target="_blank" >RIV/00216305:26210/19:PU135965 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aidic.it/cet/19/76/068.pdf" target="_blank" >https://www.aidic.it/cet/19/76/068.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1976068" target="_blank" >10.3303/CET1976068</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cost Optimisation of a Flexible Heat Exchanger Network with Fluctuation Probability using Break-Even Analysis

  • Original language description

    Heat exchanger network (HEN) which is designed to achieve the maximum energy recovery (MER) involves the integration and interactions of multiple process streams. Small disturbances on one stream can affect other connecting streams. In order to manage these disturbances, the process to process and utility heat exchangers with bypass streams installation are typically overdesigned. However, overdesign also means higher capital investment. This study presents the cost optimisation of flexible MER HEN design which considers the fluctuation probability using break-even analysis. Data were extracted for the Pinch study and assessment for flexibility and MER was performed. The MER heat exchanger maximum size (MER-HEM) is able to handle the most critical supply temperature fluctuations while minimising the utility consumption. The overdesign factor can affect the total annualised cost at a certain probability of fluctuation occurrence. Thus, the break-even analysis of the MER-HEM is performed to determine the probability that resulted in high savings of total annualised cost. Two Scenarios (A and B) with different fluctuation probabilities were used to demonstrate the methodology. Application of the proposed methodology on an Illustrative Case Study shows that, for the fluctuation at hot stream H1, the MER-HEM gives the optimum annualised total cost for Scenario A with additional savings of 10 %. For Scenario B, the MER heat exchanger original size (MER-HEO) is the optimum, giving an additional savings of 4 %. For cold stream C1, the MER-HEO is the optimum for Scenario A, giving an extra savings of 4 % whereas the MER-HEM is the optimum for Scenario B, yielding an extra savings of 9 %.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    76

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    403-408

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85076293482