All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cogeneration Optimisation for Locally Integrated Energy Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135969" target="_blank" >RIV/00216305:26210/19:PU135969 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aidic.it/cet/19/76/014.pdf" target="_blank" >https://www.aidic.it/cet/19/76/014.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET1976014" target="_blank" >10.3303/CET1976014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cogeneration Optimisation for Locally Integrated Energy Systems

  • Original language description

    Energy Efficiency is proven to be a significant opportunity for industry, cities and society, in general, to save energy costs and harmful gaseous and particulate emissions. Locally Integrated Energy System (LIES) was introduced to promote symbiosis between industry and local area to enhance their overall system energy efficiency. LIES extends Total Site Heat Integration (TSHI) to optimise the energy system for multiple industrial processes as well as other process heat demands in proximity. This paper integrates the TSHI methodology with Power Pinch Analysis (PoPA) to sequentially optimise the thermal and electrical energy in a LIES. A Power Cogeneration Estimation Table is used to systematically identify and determine the amount of power that the thermal energy system potentially generates via backpressure and condensing steam turbines. This work evaluated the thermal and power system based on total utility cost, where the thermal requirement is fulfilled by the industrial boiler system with the potential of outsourced power demands. A case study is performed for verifying the proposed methodology. Results found that LIES with Heat and Power Integration and battery storage is recommended for low utility cost operation without the need for a heat storage system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    76

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    79-84

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85076282731