Mixing approach to waste composition and its lower heating value impact on Waste-to-Energy plant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135764" target="_blank" >RIV/00216305:26210/20:PU135764 - isvavai.cz</a>
Result on the web
<a href="https://aidic.it/cet/20/81/126.pdf" target="_blank" >https://aidic.it/cet/20/81/126.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2081126" target="_blank" >10.3303/CET2081126</a>
Alternative languages
Result language
angličtina
Original language name
Mixing approach to waste composition and its lower heating value impact on Waste-to-Energy plant
Original language description
Recent research on waste management focuses primarily on the circular economy. This concept leads to increased sustainability by putting emphasis mainly on the reduction of waste production, recycling, and restriction of landfilling. It often already is incorporated in national directives and legislation, while its effective implementation can be aided by mathematical programming. This article focuses on energy recovery from wastes, which is also a crucial part of the circular economy. For optimal operation of the respective Waste-to-Energy plants, it is necessary to take into consideration the varying composition and lower heating value (LHV) of the utilized wastes (or other commodities suitable for energy recovery). Because LHV significantly influences the plant operating mode, waste heterogeneity can result in serious operational problems if bad strategic decisions have been made. The approach discussed herein represents a mixing task which considers the heterogeneity of wastes originating from different sources, the corresponding LHVs, and their impact on final energy recovery. Its implementation includes plant locations and network flows, operating costs (together with the return on investment), waste transport, and corrections of LHVs because all these factors are closely linked to the resulting profits from energy sales. The constraints consist of the necessary balances, such as capacities or heating limits. The developed optimization model is verified using a small waste transport network. Additionally, future research is outlined concerning the extension of the model’s environmental component and the large size of typical, real world optimization tasks of the respective type.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Volume of the periodical
81
Issue of the periodical within the volume
1
Country of publishing house
IT - ITALY
Number of pages
6
Pages from-to
751-756
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85092180412