Stability and Instability Regions for a Three Term Difference Equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135768" target="_blank" >RIV/00216305:26210/20:PU135768 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-35502-9_16" target="_blank" >http://dx.doi.org/10.1007/978-3-030-35502-9_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-35502-9_16" target="_blank" >10.1007/978-3-030-35502-9_16</a>
Alternative languages
Result language
angličtina
Original language name
Stability and Instability Regions for a Three Term Difference Equation
Original language description
The paper discusses stability and instability properties of difference equation y(n+1)+ay(n-l+1)+by(n-l)=0 with real parameters a, b. Beside known results about its asymptotic stability conditions a deeper analysis of instability properties is introduced. An instability degree of difference equation’s solution is introduced in analogy with theory of differential equations. Instability regions of a fixed degree are introduced and described in the paper. It is shown that dislocation of instability regions of various degrees obeys some rules and qualitatively depends on parity of difference equation’s order.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotic theory of ordinary and fractional differential equations and their numerical discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018.
ISBN
978-3-030-35501-2
ISSN
2194-1009
e-ISSN
—
Number of pages
10
Pages from-to
355-364
Publisher name
Springer
Place of publication
Cham
Event location
Dresden
Event date
May 21, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000659332700016