On exact and discretized stability of a linear fractional delay differential equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135773" target="_blank" >RIV/00216305:26210/20:PU135773 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0893965920300896" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0893965920300896</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2020.106296" target="_blank" >10.1016/j.aml.2020.106296</a>
Alternative languages
Result language
angličtina
Original language name
On exact and discretized stability of a linear fractional delay differential equation
Original language description
The paper discusses the problem of necessary and sufficient stability conditions for a test fractional delay differential equation and its discretization. First, we recall the existing condition for asymptotic stability of the exact equation and consider an appropriate fractional delay difference equation as its discrete counterpart. Then, using the Laplace transform method combined with the boundary locus technique, we derive asymptotic stability conditions in the discrete case as well. Since the studied fractional delay difference equation serves as a backward Euler discretization of the underlying differential equation, we discuss a related problem of numerical stability (with a negative conclusion). Also, as a by-product of our observations, a fractional analogue of the classical Levin–May stability condition is presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotic theory of ordinary and fractional differential equations and their numerical discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
105
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
1-9
UT code for WoS article
000527849300010
EID of the result in the Scopus database
2-s2.0-85080994453