All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nonlinear Finite Element Analysis-based flow distribution and heat transfer model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135911" target="_blank" >RIV/00216305:26210/20:PU135911 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/13/7/1664" target="_blank" >https://www.mdpi.com/1996-1073/13/7/1664</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en13071664" target="_blank" >10.3390/en13071664</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nonlinear Finite Element Analysis-based flow distribution and heat transfer model

  • Original language description

    A new strategy for fast, approximate analyses of fluid flow and heat transfer is presented. It is based on Finite Element Analysis (FEA) and is intended for large yet structurally fairly simple heat transfer equipment commonly used in process and power industries (e.g., cross-flow tube bundle heat exchangers), which can be described using sets of interconnected 1-D meshes. The underlying steady‑state model couples an FEA-based (linear) predictor step with a nonlinear corrector step, which results in the ability to handle both laminar and turbulent flows. There are no limitations in terms of the allowed temperature range other than those potentially stemming from the usage of fluid physical property computer libraries. Since the fluid flow submodel has already been discussed in the referenced conference paper, the present article focuses on the prediction of the tube side and the shell side temperature fields. A simple cross-flow tube bundle heat exchanger from the literature and a heat recovery hot water boiler in an existing combined heat and power plant, for which stream data are available from its operator, are evaluated to assess the performance of the model. To gain further insight, the results obtained using the model for the heat recovery hot water boiler are also compared to the values yielded by an industry‑standard heat transfer equipment design software package. Although the presented strategy is still a “work in progress” and requires thorough validation, the results obtained thus far suggest it may be a promising research direction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategic Partnership for Environmental Technologies and Energy Production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENERGIES

  • ISSN

    1996-1073

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    1-20

  • UT code for WoS article

    000537688400133

  • EID of the result in the Scopus database

    2-s2.0-85082772612