All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CME-induced Thermodynamic Changes in the Corona as Inferred from Fe xi and Fe xiv Emission Observations during the 2017 August 21 Total Solar Eclipse

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135931" target="_blank" >RIV/00216305:26210/20:PU135931 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ab5e34" target="_blank" >https://iopscience.iop.org/article/10.3847/1538-4357/ab5e34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ab5e34" target="_blank" >10.3847/1538-4357/ab5e34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CME-induced Thermodynamic Changes in the Corona as Inferred from Fe xi and Fe xiv Emission Observations during the 2017 August 21 Total Solar Eclipse

  • Original language description

    We present the first remote sensing observations of the impact from a Coronal Mass Ejection (CME) on the thermodynamic properties of the solar corona between 1 and 3 R. Measurements of the Fe xi (789.2 nm) and Fe xiv (530.3 nm) emission were acquired with identical narrow-bandpass imagers at three observing sites during the 2017 August 21 Total Solar Eclipse (TSE). Additional continuum imagers were used to observe K+F corona scattering, which is critical for the diagnostics presented here. The total distance between sites along the path of totality was 1400 km, corresponding to a difference of 28 minutes between the times of totality at the first and last site. These observations were used to measure the Fe xi and Fe xiv emission relative to continuum scattering, as well as the relative abundance of Fe10+ and Fe13+ from the line ratio. The electron temperature (T-e) was then computed via theoretical ionization abundance values. We find that the range of T-e is (1.1-1.2) x 10(6) K in coronal holes and (1.2-1.4) x 10(6) K in streamers. Statistically significant changes of T-e occurred throughout much of the corona between the sites as a result of serendipitous CME activity prior to the eclipse. These results underscore the unique advantage of multi-site and multi-wavelength TSE observations for probing the dynamic and thermodynamic properties of the corona over an uninterrupted distance range from 1 to 3 R.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ASTROPHYSICAL JOURNAL

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Volume of the periodical

    888

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000520587200001

  • EID of the result in the Scopus database

    2-s2.0-85080101309