All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Biowaste Treatment and Waste-to-Energy - Environmental Benefits

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136273" target="_blank" >RIV/00216305:26210/20:PU136273 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/13/8/1994/htm" target="_blank" >https://www.mdpi.com/1996-1073/13/8/1994/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en13081994" target="_blank" >10.3390/en13081994</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Biowaste Treatment and Waste-to-Energy - Environmental Benefits

  • Original language description

    Biowaste represents a significant fraction of municipal solid waste (MSW). Its separate collection is considered as a useful measure to enhance waste management systems in both the developed and developing world. This paper aims to compare the environmental performance of three market-ready technologies currently used to treat biowaste—biowaste composting, fermentation, and biowaste incineration in waste-to-energy (WtE) plants as a component of residual municipal solid waste (RES). Global warming potential (GWP) was applied as an indicator and burdens related to the operation of facilities and credits obtained through the products were identified. The environmental performance of a WtE plant was investigated in detail using a model, implementing an approach similar to marginal-cost and revenues, which is a concept widely applied in economics. The results show that all of the treatment options offer an environmentally friendly treatment (their net GWP is negative). The environmental performance of a WtE plant is profoundly affected by its mode of its operation, i.e., type of energy exported. The concept producing environmental credits at the highest rate is co-incineration of biowaste in a strictly heat-oriented WtE plant. Anaerobic digestion plants treating biowaste by fermentation produce fewer credits, but approximately twice as more credits as WtE plants with power delivery only.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENERGIES

  • ISSN

    1996-1073

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

    000538041800137

  • EID of the result in the Scopus database

    2-s2.0-85084112882