All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computation of temperature field by cell method and comparing with commercial software

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136484" target="_blank" >RIV/00216305:26210/20:PU136484 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1757-899X/776/1/012045" target="_blank" >https://iopscience.iop.org/article/10.1088/1757-899X/776/1/012045</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/776/1/012045" target="_blank" >10.1088/1757-899X/776/1/012045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computation of temperature field by cell method and comparing with commercial software

  • Original language description

    This paper deals with the temperature field of the shell and tube heat exchanger with segmental baffles. Two different types of shell and tube heat exchangers were analysed by a numerical model for thermal-hydraulic rating called the cell method. The cell method is a numerical computational model for calculating of temperature field of a shell and tube heat exchanger with segmental baffles. A huge benefit of the cell method is especially its simplicity. The computation of temperature field by the cell method is very fast and without the necessity of powerful hardware accessories. For analyses, two different types of shell and tube heat exchangers with segmental baffles were used. First, a co-current flow heat exchanger with a floating head and second a counter-current flow heat exchanger with a fixed tubesheet. Both analysed heat exchangers are horizontal, have one tube and one shell pass and segmental baffles. The results from cell method were compared with results from the HTRI, which is one of the most widely used commercial software for solving thermal-hydraulic rating of heat exchangers. The scope of this paper is to assess how exact the cell method is and if its results are useful for a mechanical design of shell and tube heat exchanger with segmental baffles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategic Partnership for Environmental Technologies and Energy Production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IOP Conference Series: Materials Science and Engineering

  • ISSN

    1757-899X

  • e-ISSN

  • Volume of the periodical

    776

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85083343976