All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Practical energy retrofit of heat exchanger network not containing utility path

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136575" target="_blank" >RIV/00216305:26210/20:PU136575 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/13/11/2711" target="_blank" >https://www.mdpi.com/1996-1073/13/11/2711</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en13112711" target="_blank" >10.3390/en13112711</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Practical energy retrofit of heat exchanger network not containing utility path

  • Original language description

    The paper presents a method developed for the energy retrofit of specific Heat Exchanger Networks not containing Utility Paths. This useful and highly practically oriented method involves a systematic approach to obtaining the most efficient minimal modification topology of a Heat Exchanger Network, which brings the greatest benefits in terms of energy savings of the modified process. In principle, it is focused on finding the most suitable location for a new heat exchanger insertion to create the most efficient Utility Path. The next step of the developed retrofit method is the detailed design of the newly integrated heat exchanger using commercial software in combination with several heuristic rules regarding the cost-free investment and maintenance cost minimization of a new heat exchanger and considering heat transfer enhancement within the available exchanger type, space, and fluids pressure drop constraints. The detail design stage of the method also includes observation and reassessment of the performance and operational parameters of the existing heat exchangers. Then, the developed method is applied to the case of the Heat Exchanger Network retrofit in the process of the hydrogenation of oil.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategic Partnership for Environmental Technologies and Energy Production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENERGIES

  • ISSN

    1996-1073

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    „2711-1“-„2711-16“

  • UT code for WoS article

    000545401100038

  • EID of the result in the Scopus database

    2-s2.0-85085857349