All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Greenhouse gas credits from integrated waste-to-energy plant

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136724" target="_blank" >RIV/00216305:26210/20:PU136724 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652620324550" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652620324550</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2020.122408" target="_blank" >10.1016/j.jclepro.2020.122408</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Greenhouse gas credits from integrated waste-to-energy plant

  • Original language description

    In Europe, most of the district heat is produced from fossil energy sources such as coal or natural gas. Together with the intention to divert municipal waste from landfill, which is still the main way of treatment in approximately half of the EU countries, there is a potential for the construction of waste-to-energy plants (WtEP) that can partially replace fossil fuels. An important factor in planning the construction of new WtE plants is the assessment of the project's economy. However, the ecological aspect of the project, namely the greenhouse-gas (GHG) savings, is becoming a topic of discussion nowadays. In terms of GHG savings, WtE plant integration into an existing district heating system (DHS) has a positive impact, but its level is often only roughly estimated. The paper presents a comprehensive mathematical optimization tool working on a daily time interval that is able to evaluate the impact of changing current technology or WtE plant construction on global warming potential. The technical parameters such as boiler output range, energy efficiency, etc. are considered. The tool also allows to put in the context the GHG savings and economic benefits of the project. These two factors are very difficult to compare. The study answers the question of how to deal with this issue and presents the possibility of comparison, which is generally transferable to any two parameters. Due to two poorly comparable criteria, the result does not include a single optimal solution, but clearly illustrates the view of the overall issue and gives a good basis for the final decision. The method used are illustrated in real-world DHS with various parameters where the relationship between GHG savings and the economic benefits of the integration of a WtE plant is evaluated. The whole problem is the task of linear integer programming and is implemented in the GAMS programming environment. (C) 2020 Published by Elsevier Ltd.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    270

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000579071300065

  • EID of the result in the Scopus database

    2-s2.0-85086562798