Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137140" target="_blank" >RIV/00216305:26210/20:PU137140 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S036054422030445X" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S036054422030445X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2020.117338" target="_blank" >10.1016/j.energy.2020.117338</a>
Alternative languages
Result language
angličtina
Original language name
Heat exchanger network retrofit by a shifted retrofit thermodynamic grid diagram-based model and a two-stage approach
Original language description
TGraphical tools are useful in the heat exchanger network (HEN) retrofit to maximise energy savings. The disadvantage of heuristic rules, which are usually applied to make retrofit decisions using graphical tools, is that they could lead to sub-optimal solutions. The presented study developed a two-stage method for HEN retrofit. In the first stage, a mixed-integer linear programming (MILP) model is formulated based on the structure of the shifted retrofit thermodynamic grid diagram (SRTGD) to minimise the utility cost and investment. The non-linear equations for the investment cost calculation were linearised, and the parameters in the linearised equations were obtained using data regression. In the second stage, a particle swarm optimisation (PSO) algorithmwas selected and applied to adjust the inlet and outlet temperatures of heat exchangers with the aim of minimising the payback period on the basis of the first-stage solution. The proposed two-stage procedure combines the strengths of the MILP and PSO methods, offering convenient interfaces for user interaction and results interpretation. Two cases were studied to verify the effectiveness of the method. Case 1 and Case 2 decreased the payback period by 11.6% and 21.7% compared to the results obtained in previous retrofit applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Volume of the periodical
neuveden
Issue of the periodical within the volume
198
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
117338-117338
UT code for WoS article
000527569500056
EID of the result in the Scopus database
2-s2.0-85081680216