All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New insights into the potential of the gas microturbine in microgrids and industrial applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137315" target="_blank" >RIV/00216305:26210/20:PU137315 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1364032120303695" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032120303695</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2020.110078" target="_blank" >10.1016/j.rser.2020.110078</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New insights into the potential of the gas microturbine in microgrids and industrial applications

  • Original language description

    This paper gives a comprehensive insight into gas microturbine (GMT) as a part of microgeneration systems. The gas microturbine is a highly effective source that can operate on various types of fuel, including a low-percentage methane fuel such as biogas or landfill gas. The microturbine is widely used in an industrial, rural and commercial application that can benefit from combined heat and power production as a prime or backup source. A microgrid is a modern way to support decentralised power production. It can operate in off-grid mode or as a tool to stabilise the grid and help with peak-shaving as well as to supply remote areas with generated power. The combination of gas microturbine as a prime mover for the microgrid is a smart solution that can quickly react and implement renewable and new technologies. The GMT can be coupled with solar photovoltaics, wind turbine, fuel cells or combustion engines. Use of these technologies can create a sophisticated, stable and highly effective power system. Based on the findings, the combination of microgrid and gas microturbine is very viable and favourable in terms of efficiency, controllability, stability and variety of applications. This paper provides a survey in the field of gas microturbine, its operation, industrial applications, software for microturbine integration, microgrid operation, and coupling the microgrids with gas microturbines, as well as possible challenges and perspectives for this area of combined power generation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008413" target="_blank" >EF16_026/0008413: Strategic Partnership for Environmental Technologies and Energy Production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    134

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000582927200004

  • EID of the result in the Scopus database

    2-s2.0-85090228160