Digital Jordan curves with respect to a closure operator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU138059" target="_blank" >RIV/00216305:26210/20:PU138059 - isvavai.cz</a>
Result on the web
<a href="https://aip.scitation.org/doi/abs/10.1063/5.0026422" target="_blank" >https://aip.scitation.org/doi/abs/10.1063/5.0026422</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0026422" target="_blank" >10.1063/5.0026422</a>
Alternative languages
Result language
angličtina
Original language name
Digital Jordan curves with respect to a closure operator
Original language description
We introduce 2D digital Jordan curves as the curves satisfying a digital Jordan curve theorem. The theorem builds on the connectedness in the digital plane Z2 provided by a closure operator. An advantage of using the closure operator instead of the Khalimsky topology is that the operator provides a richer variety of Jordan curves.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019
ISBN
978-0-7354-4025-8
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
AIP Publishing
Place of publication
Melville, NY, USA
Event location
hotel Sheraton, Ixia, Rhodos
Event date
Sep 23, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000636709500024