All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Development of Numerical Trigeneration System Cascade Analysis with Transmission and Storage Energy Losses Consideration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU138576" target="_blank" >RIV/00216305:26210/20:PU138576 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1757-899X/884/1/012019" target="_blank" >https://iopscience.iop.org/article/10.1088/1757-899X/884/1/012019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/884/1/012019" target="_blank" >10.1088/1757-899X/884/1/012019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Development of Numerical Trigeneration System Cascade Analysis with Transmission and Storage Energy Losses Consideration

  • Original language description

    Depletion and rising prices of fossil fuel, as well as environmental pollution, have led the world to find energy-efficient technologies such as improvement of efficiency of the current energy systems. The thermal efficiency of the current systems can be improved from 30 - 40 % to 80 - 90% through implementation of trigeneration system. Trigeneration is a system which can improve the efficiency of the current energy systems by reusing the waste heat to produce power, heating and cooling from a single fuel. Pinch Analysis is a methodology which enables users to optimize the energy, water and other resources. Trigeneration System Cascade Analysis (TriGenSCA) is developed to minimize power, heating and cooling energies as well as obtain optimal sizing of the trigeneration system. In the previous TriGenSCA, transmission energy losses which contribute significantly to the final amount of energy arrived at the demand was not considered. This leads to an optimistic target for energy reduction. The objective of this work is to develop an extension of numerical insight-based Pinch Analysis methodology for optimal trigeneration system which considers energy losses in the transmission lines and storage systems. There are three major steps on developing TriGenSCA, which are data extraction, construction of TriGenSCA with transmission and storage energy losses, and comparison of TriGenSCA with and without transmission energy losses consideration. The transmission energy losses are included in the TriGenSCA where energy depleted due to the transportation of energy from the trigeneration system to the demand load, separated by 10 km of distances. Aluminium cable steel, carbon and stainless steel pipelines are used to transfer power and thermal energies to the demands. Based on the case study, the energy difference of TriGenSCA with and without transmission energy losses is 76.83 MWh/d. This shows huge energy is lost due to the transmission process. The development of this systemat

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IOP Conference Series: Materials Science and Engineering

  • ISBN

  • ISSN

    1757-8981

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    012019-012019

  • Publisher name

    IOP Publishing Ltd

  • Place of publication

    Neuveden

  • Event location

    Putrajaya

  • Event date

    Dec 8, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article