All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

THERMAL PROPERTIES OF CARDIOPLEGIA HEAT EXCHANGERS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU144084" target="_blank" >RIV/00216305:26210/20:PU144084 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.engmech.cz/im/proceedings/show_p/2020/82" target="_blank" >https://www.engmech.cz/im/proceedings/show_p/2020/82</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21495/5896-3-082" target="_blank" >10.21495/5896-3-082</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    THERMAL PROPERTIES OF CARDIOPLEGIA HEAT EXCHANGERS

  • Original language description

    Cardiac surgeries that involve cardiopulmonary bypass technique require a stable temperature maintenance for oxygenated blood or the cardioplegia solution. For this purpose, the heat exchangers are used. Nowadays, these exchangers consist of stainless steel tubes or bellows in a plastic shell. The blood is then warmed or cooled by water flowing in the shell around these structures. In the paper, the thermal specifications of two commercially used cardioplegia heat exchangers Capiox Cardioplegia and MYOtherm XP were evaluated and compared. For this purpose, a water was used as a substitution for blood. Both components were tested for varying flow rates in the pipes in the range 20-150 l/h and fixed flow rate 700 l/h in the shell. The thermal performances of both devices resulted similarly (up to 2.4 kW) at maximal flow rate. The performance factors for low flow rates approached values close to 0.98 and with increasing flow rate decreased down to 0.50. MYOtherm XP shows lower pressure drop than Capiox Cardioplegia due to more optimal construction. The major difference between the heat exchangers was observed in overall heat transfer coefficients at maximal flow rate and resulted in 2191.3 W/m(2)K or 1760.2 W/m(2)K for MYOtherm XP or Capiox Cardioplegia, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Research centre for low-carbon energy technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ENGINEERING MECHANICS 2020 (IM2020)

  • ISBN

    978-80-214-5896-3

  • ISSN

    1805-8248

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    82-85

  • Publisher name

    BRNO UNIV TECHNOL, FAC MECHANICAL ENGINEERING

  • Place of publication

    BRNO

  • Event location

    Online

  • Event date

    Nov 24, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000667956100013