All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Selection of Parameters for Soil Quality Following Compost Application: A Ranking Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU139734" target="_blank" >RIV/00216305:26210/21:PU139734 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.aidic.it/cet/21/83/085.pdf" target="_blank" >https://www.aidic.it/cet/21/83/085.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2183085" target="_blank" >10.3303/CET2183085</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Selection of Parameters for Soil Quality Following Compost Application: A Ranking Method

  • Original language description

    Intensive agricultural practices with excessive use of chemical fertiliser have led to the deterioration of soil fertility where soil losses its ability to sustain a consistent crop system with high yield. Compost is a potential substitution to chemical fertiliser. As a biological additive, compost can improve soil quality and crop productivity, controlling plant diseases and reduce nutrient loss and water pollution. However, the effect of compost application to enhance the quality of the soil may be inconsistent due to the slow release nature of the nutrients, compost quality, types of feedstocks and other factors. To evaluate the effects of compost application, it may involve a large number of parameter analyses, which can be costly and time ineffective. There is no indicator to reduce the number of analyses concerning the effect of compost application on soil fertility. In this study, a ranking method is proposed to identify the minimum number of parameters able to track the effect of compost application on soil fertility and the environmental impact. A total of 23 soil parameters were selected through literature review and ranked for their importance to show the effect of compost use. The ranking method was developed based on (1) the reporting frequency of environmental and soil fertility parameters and (2) impact of the selective parameter to the environment. Soil C and N contents were found to be the most frequently reported parameters (85 and 90 %) to affect soil fertility upon compost application. Both contents in the soil also change significantly before and after compost application. Heavy metals and N2O emissions were found to impact the environment most due to the toxicity of heavy metal to the environment and human health and high global warming potential of N2O. Based on the ranking method, nine parameters (N, NO3--N, P, K, micro-nutrients, heavy metals, C, pH and N2O emissions) were selected. 60 % of soil analyses were reduced following this ranking m

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    83

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    505-510

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85101052046