On Münchhausen numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140255" target="_blank" >RIV/00216305:26210/21:PU140255 - isvavai.cz</a>
Result on the web
<a href="http://nntdm.net/volume-27-2021/number-1/14-21/" target="_blank" >http://nntdm.net/volume-27-2021/number-1/14-21/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7546/nntdm.2021.27.1.14-21" target="_blank" >10.7546/nntdm.2021.27.1.14-21</a>
Alternative languages
Result language
angličtina
Original language name
On Münchhausen numbers
Original language description
The remarkable property of the number 3435, namely 3435 = 3^3 + 4^4 + 3^3 + 5^5, was formalized to the notion of Münchhausen numbers. Properties of these numbers are studied and it is showed that although there are only finitely many Münchhausen numbers in a given base b, there are infinitely manyMünchhausen numbers of the length 2 in all bases. A certain reversion in the definition gives the notion of so-called anti-Münchhausen numbers, search for them is computationally more effective
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Notes on Number Theory and Discrete Mathematics
ISSN
1310-5132
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
1
Country of publishing house
BG - BULGARIA
Number of pages
8
Pages from-to
14-21
UT code for WoS article
000637351800003
EID of the result in the Scopus database
—