All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Novel Approaches to the Design of an Ultra-Fast Magnetorheological Valve for Semi-Active Control

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140816" target="_blank" >RIV/00216305:26210/21:PU140816 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/14/10/2500" target="_blank" >https://www.mdpi.com/1996-1944/14/10/2500</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma14102500" target="_blank" >10.3390/ma14102500</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Novel Approaches to the Design of an Ultra-Fast Magnetorheological Valve for Semi-Active Control

  • Original language description

    This article presents a list of suitable techniques and materials leading to the design of an ultra-fast magnetorheological (MR) valve. Two approaches for achieving the short response time are proposed: (a) by means of material, and (b) by means of the shape. Within the shape approach, the revolutionary technique of 3D metal printing using a selective laser melting (SLM) method was tested. The suitability of the materials and techniques is addressed based on the length of the response time, which is determined by the FEM. The simulation results determine the response time of the magnetic flux density on the step signal of the current. Subsequently, the response time is verified by the measurement of the simple magnetorheological valve. The following materials were tested: martensitic stainless steel AISI 420A (X20Cr13), cutting steel 11SMn30, pure iron for SLM, Sintex SMC STX prototyping material, ferrite N87, and Vacoflux 50. A special technique involving grooves was used for preventing eddy currents on materials with a high electrical conductivity. The simulation and experimental results indicate that a response time shorter than 2.5 ms can be achieved using materials such as Sintex SMC prototyping, ferrite N87, and grooved variants of metal pistons.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/GJ20-23261Y" target="_blank" >GJ20-23261Y: Study of the magnetorheological fluid response time</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

    1-20

  • UT code for WoS article

    000662525200001

  • EID of the result in the Scopus database

    2-s2.0-85106602787