All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A sustainable syngas cryogenic separation process combined with ammonia absorption refrigeration pre-cooling cycle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141093" target="_blank" >RIV/00216305:26210/21:PU141093 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0959652621018308?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0959652621018308?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2021.127612" target="_blank" >10.1016/j.jclepro.2021.127612</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A sustainable syngas cryogenic separation process combined with ammonia absorption refrigeration pre-cooling cycle

  • Original language description

    With the goal of effectively utilising low-grade waste compression heat by investigating potential improvements in energy efficiency, this study proposed a novel syngas liquefaction process combined with an ammonia absorption refrigeration cycle driven by available low-grade compression heat. The systems were evaluated from thermodynamics, as well as techno-economic aspects, to reduce the energy consumption and greenhouse gas emission. This study attempted to tackle two vital issues: how to effectively convert low-grade compression heat to cooling capacity to improve energy efficiency and design refrigeration cycles (both ammonia absorption refrigeration cycle and main refrigeration cycle) tailored with Heat Integration. The process was modelled, simulated, and optimised, aiming to reduce refrigerant and energy. The case study results demonstrated that the syngas liquefaction process with ammonia absorption cycle dramatically reduced the refrigerant consumption by 15.3%, contributing to a 7 MW reduction in electricity consumption. The specific energy consumption was decreased from 3.2 to 2.36. The coefficient of performance increased from 0.11 to 0.14. As for the environmental effect, the total greenhouse gas emissions were decreased from 0.12 Mt CO2-eq to 0.09 Mt CO2-eq. The exergy analysis showed that the new process decreased the total exergy destruction by 6.7 MW, leading to a higher exergy efficiency of 54.5%. In view of the economic performance, the total capital investment and total product cost were lowered by 10.8% and 20.1%. The proposed syngas liquefaction process exhibited the significant potential to improve environmental, thermodynamic, and techno-economic performances. The sensitivity analysis showed that the product cost of the new process was less sensitive to the variation of the electricity price. © 2021

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    313

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    127612-127612

  • UT code for WoS article

    000683808700003

  • EID of the result in the Scopus database

    2-s2.0-85108068424