All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heat Exchanger for Air-Liquid Application with Chaotised Polymeric Hollow Fibres

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141387" target="_blank" >RIV/00216305:26210/21:PU141387 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1359431121008000" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1359431121008000</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.applthermaleng.2021.117365" target="_blank" >10.1016/j.applthermaleng.2021.117365</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heat Exchanger for Air-Liquid Application with Chaotised Polymeric Hollow Fibres

  • Original language description

    Polymeric hollow fibre heat exchangers were presented for the first time in 2004. Nowadays there are not just the shell-and-tube types that there were at the beginning. In this paper, five heat exchangers with a heat transfer surface made from chaotised polymeric hollow fibres were studied. The expression chaotised fiber is used for a hollow fiber with random curvature along it. Each chaotised fiber has a different shape. The heat transfer surfaces presented varied in their fiber diameter, number of fibers (from 180 to 1050) and shape. These heat exchangers were tested as cross-flow heat exchangers in an air tunnel. The cross section of the tested samples was 100 × 100 mm. Water was used as a coolant inside the hollow polymeric fibres. Three different airflow velocities were used. The overall heat transfer coefficients were determined, and the heat transfer coefficients on the air and water sides were derived. A comparison is made between heat exchangers where the heat transfer surface was made from fibers with a regular structure of and those with a chaotic structure. The correlation for the Nusselt number for a heat transfer surface formed by a bundle of chaotised hollow fibers was found.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Research centre for low-carbon energy technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Thermal Engineering

  • ISSN

    1359-4311

  • e-ISSN

  • Volume of the periodical

    197

  • Issue of the periodical within the volume

    October 2021

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000688299500002

  • EID of the result in the Scopus database

    2-s2.0-85111828338