Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141541" target="_blank" >RIV/00216305:26210/21:PU141541 - isvavai.cz</a>
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9185" target="_blank" >http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=9185</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2021.1.62" target="_blank" >10.14232/ejqtde.2021.1.62</a>
Alternative languages
Result language
angličtina
Original language name
Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations
Original language description
The paper studies the existence, exact multiplicity, and a structure of the set of positive solutions to the periodic problem u''=p(t)u+q(t,u)u+f (t); u(0)=u(omega), u'(0)=u'(omega), where p, fin L([0,omega]) and q : [0,omega]times Rto R is Carathéodory function. Obtained general results are applied to the forced non-autonomous Duffing equation u'' = p(t)u+h(t)|u|^lambdasgn u+f (t), with lambda>1 and a non-negative hin L([0,omega]). We allow the coefficient p and the forcing term f to change their signs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2021
Issue of the periodical within the volume
62
Country of publishing house
HU - HUNGARY
Number of pages
33
Pages from-to
1-33
UT code for WoS article
000697312800001
EID of the result in the Scopus database
2-s2.0-85115755158