Novel Zigzag-based Benchmark Functions for Bound Constrained Single Objective Optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU142804" target="_blank" >RIV/00216305:26210/21:PU142804 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9504720" target="_blank" >https://ieeexplore.ieee.org/document/9504720</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC45853.2021.9504720" target="_blank" >10.1109/CEC45853.2021.9504720</a>
Alternative languages
Result language
angličtina
Original language name
Novel Zigzag-based Benchmark Functions for Bound Constrained Single Objective Optimization
Original language description
The development and comparison of new optimization methods in general, and evolutionary algorithms in particular, rely heavily on benchmarking. In this paper, the construction of novel zigzag-based benchmark functions for bound constrained single objective optimization is presented. The new benchmark functions are non-differentiable, highly multimodal, and have a built-in parameter that controls the complexity of the function. To investigate the properties of the new benchmark functions two of the best algorithms from the CEC'20 Competition on Single Objective Bound Constrained Optimization, as well as one standard evolutionary algorithm, were utilized in a computational study. The results of the study suggest that the new benchmark functions are very well suited for algorithmic comparison.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Computer Simulations for Effective Low-Emission Energy Engineering</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 IEEE Congress on Evolutionary Computation (CEC)
ISBN
978-1-7281-8393-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
857-862
Publisher name
IEEE
Place of publication
neuveden
Event location
Krakow
Event date
Jun 28, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000703866100108