Problems with uncertain hysteresis operators and homogenization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143031" target="_blank" >RIV/00216305:26210/21:PU143031 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0378475421001543" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378475421001543</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2021.04.023" target="_blank" >10.1016/j.matcom.2021.04.023</a>
Alternative languages
Result language
angličtina
Original language name
Problems with uncertain hysteresis operators and homogenization
Original language description
The paper deals with the reliable solution to the homogenization problem for the scalar heat equation with the uncertain hysteresis Prandtl–Ishlinskii operator. The problem is solved by the so-called worst scenario method. The contribution extends the results of paper Franců (2017), to the corresponding homogenization problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Computers in Simulation
ISSN
0378-4754
e-ISSN
1872-7166
Volume of the periodical
189
Issue of the periodical within the volume
November 2021
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
368-379
UT code for WoS article
000683684700024
EID of the result in the Scopus database
2-s2.0-85105456764